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Abstract. Retrieving the potential energy function
from second virial data, using the sensitivity anal-
ysis approach, is discussed in this work. A poten-
tial energy function, with an initial average error of
92%, in temperature range 100K to 1500K, with re-
spect to a reference potential, was considered as an
initial guess. Within the present framework it was
possible to produce another potential with an aver-
age error of 0.7% and 2.7%, using two regulariza-
tion methods. Analysis of the sensitivity matrix has
shown to be an important step while inverting the
data. This preliminar analysis provides important
informations about the optimal temperature and co-
ordinate range to be used in the inversion process.

INTRODUCTION

The mathematical formulation of a phenomena
is generally expressed as K(f) = g, in which g
represents an observable quantity, f characterizes
the system and K is a nonlinear operator between
these two quantities. Obtation of g, from K and f,
represents what is called a direct problem, whereas
extraction of f, from K and g is the inverse
problem [1]. The retrieve of the potential energy
function from experimental data, such as from
scattering data, spectroscopy and thermodynamics,
is particularly important in physical-chemistry.

The above inverse problem is know as an

ill posed problem, defined such that one of the
three conditions, (a)existence; (b)uniqueness or
(c)continuity is not satisfied [2]. In general, none
of the above three conditions are satisfied. The
inherent experimental error, together with the
approximate model used to describe the phenom-
ena, that is, K (f) = g makes the solution of the
inverse problem to be characterized as an ill posed
problem. As consequence, the representation of
K will be ill conditioned or rank deficient, which
makes traditional methods, such as the Gausssian
elimination or the LU decomposition [3], inade-
quated to handle inverse problems. Instead, more
appropriate methods, such as the Tikhonov regu-
larization [1] or the singular value decomposition
[3], has to be used to find an adequate solution [1].

The expansion, in terms of density, for the
compressibilty factor gives the relation between
potential energy function and second virial co-
efficient, indicating this is a nonlinear ill posed
problem.  Nevertheless, an equivalent linear
problem can be estabilished at the expense of
introducing a singularity into the problem. As
a consequence, the inverse problem has to be
solved in two stages; one to the right and the
other to the left of this singularity. Each of these
two parts of the potential were obtained by using
recurrent neural network [4, 5], by singular value
decomposition and by the Tikhonov regularization
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[6, 7]. The problem has also been solved in a non

linear form using recurrent neural network [8] and
on the class of convex-concave functions [9].

In the present work a functional sensitivy anal-
ysis approach will be used to obtain the Ar-Ar po-
tential energy function from second virial data. Al-
though the original problem is also transformed
in a linear one, no singularity is involved and the
whole potential can be obtained in an iterative pro-
cedure. The sensitivity matrix, connecting poten-
tial energy with second virial coefficient, will be
analysed with respect to the temperature and poten-
tial energy ranges. This will indicate which region
of the potential will be adequated to be inverted in
a set of experimental data.

THE SENSITIVITY ANALYSIS APPROACH

Sensitivity analysis approach will be applied to
recover the potential energy function from second
virial data using the equation of state in the form
[10], z27 = p+B(T)p?, in which B(T) is the sec-
ond virial coefficient and the other quantities have
their usual meaning. The relation between poten-
tial energy function, E,(R) and the second virial
coefficient is given by,

B(T) =27r/ R*(1— e B (B)/kBTYqR (1)
0

The above integral equation will be represent, in

general terms, as

/K(m, f(y)dy = g(=), 2)

in which z will stand for the temperature and y
for the coordinate. Discretization of (2), at z;,
gives approximately, Y ! K(zj, fi)AR; = gj.
with f; = f(y;) and g; = g(x;). A change in
g, with a correspondent change in f, can be written

as,

Z[K(mj;fz' +6fi) — K(zj, fi)]AR; = dg; (3)

A S

Using, K(f; +dfi) = K(f;) + Ji;0 f; with J;; =
OK;;
afi

Z Jij AR f; = dg; 4

How the change in g; will affect the solutions f;
will be measure by the quantity J;; AR;, thereafter
denoted by S;;. In an integral form, equation (4) is
equivalent to,
0K(T, R)
————"dR | 6f(R) = ég(T 5
[ (Tt 2dr) ot(m) =58() 5

or, in matrix notation,
Séf = dg (6)
This equation can be used in the following manner:
1. An initial guess, fy, is given for the unknow.

2. The approximately experimental value, gg, is
computed.

3. The quantity dg is calculated as the difference
between the experimental data and gg.

4. A correction to the initial guess can be evalu-
ated as 0f = S~!dg from which a new value
for f is obtained.

Equation (5) is general and can be applied to any
nonlinear problem with a due interpretation of the
quantities. For the present problem f will be the
potential energy function, E,, and g, the second
virial data, B.

The original nonlinear problem is, therefore,
transformed into a Fredholm integral equation of
first order, which will be solved by the singular
value decomposition method [3], with two filters
factors. The sensitivity matrix is transformed into,
S = UEV” inwhich U € R™*™ and V € R"*"
are orthogonal matrices, whereas ¥ € R™*" is a
diagonal matrix. The columns of U and V will be
represented, respectively, by u; e v;, and o; the di-
agonal elements of 3. A general solution of (6) can

be written as,

)

ul.0B
Vi
0;

SE,(N) =) i
i=1
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with A a regularization parameter and ¢; » a fil-
ter factor, depending on the singular values and
on the regularization parameter. Two special cases
are possible for (7), corresponding to two different
choices of the filter factor: (a) A filter factor equal
to unity before a certain value, k, and zero after
this value; and (b) A smooth filter which takes into
account all singular values in decreasing order of

importance, ¢; x = a procedure equivalent

o}
01.2 +A°
to the Tikhonov regularization [1].

RESULTS AND DISCUSSIONS

Important informations on the inversion to be
carried out can be obtained by analysing some

aspects of S(R, T'), although it is more appropriate

dIn(sB)
dIn(3E,)" Anal-

ysis of the S’ matrix will be easier, since it will

to use, instead, the matrix, S’ =

have information on relative values, rather than on
absolute values, as in the S matrix.

Level curves of the sensitivity matrix, S’ are pre-
sented in figure (1). In the region in which the sen-
sitivity matrix assumes larger values it will be more
stable to obtain the inverted potential. The oppo-
site is also true. If S’ reaches small values, E,(R)
will be more difficult to be obtained. The appropri-
ate region for the inversion procedure is, therefore,
promptly obtained from figures (1).

Simulated data were obtained by carrying the
integration of (1) in the coordinate range 1.5A to
40A and temperature between 100K to 1500K, us-
ing recent potential energy for Ar-Ar system [12].
These data give and error of 4% when compared
with the experimental second virial data. However,
when analysing the inverted potential, one must
be guided by the sensitivity matrix. This analysis
gives the optimal region for the coordinate from 3A
to 6A.
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Figure 1: Level curves for the sensitivity matrix.

An initial guess for the potential energy func-
tion, which gives an error of 92% for the calcu-
lated second virial coefficient, was used to obtain
a new potential from equation (7). In figure (2)
the computed potential, using the truncated singu-
lar value decomposition, is compared against the
initial guess and the potential from reference [12].
The new potential gives an error of 0.7% for the
calculated second virial coefficient, a value within
the experimental error. In figure (3) the inverted
potential was computed using the Tikhonov regu-
larization, with 2.7% error in the computed B(T).
The discrepancy principle [13] was used to calcu-
lated the optimal dimension of the subspaces and
the optimal regularization parameter. The com-
puted values are k = 7 and A = 92.367 A3/eV,
from which the potentials were calculated. Second
virial coefficients from Aziz’s potential [12], to-
gether with the values calculated from the inverted
potentials are presented in figure (4).

Although both potential gives basically the same
error for the second virial coefficient their quality
can be better appreciated by computing the error of
these new potentials with respect to the potential of
reference [12], taken as exact. In the region from
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Figure 2: Potential energy function from reference [12]
(full lines) initial guess (dashed lines) and inverted po-
tential energy function (o). Results are computed using
the singular value decomposition.

1.5 A to 40 A the relative error are of the order of
103. This is not taken to imply the potentials are not
of quality to describe the property being inverted.
As inferred by the analysis of the sensitivity ma-
trix the results have to be considered in the region
where information can be obtained, that is, between
3A to 6A. In this region the potential from figures
(2) and (3) gives, respectively, the errors 0.6% and
0.5%. The error in the initial guess, inside this re-
gion, is 27%, showing the improvement of the po-
tentials.

CONCLUSION

The functional sensivity approach was used to
recover potential energy function from simulated
Unlike in the Keller
and Zumino approach [7] the present functional

second virial coefficient.

linearization introduces no singularity in the new
integral equation, providing a single procedure, as
in the previous nonlinear approach [8], to recover
the complete potential.

An optimal region, for the temperature and
coordinate, can be inferred from the sensitivy
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Figure 3: Inverted potential using the Tikhonov regular-

ization. Labels as in previous figure.

matrix. In this case the optimal coordinate range
coincide with the one obtain previously for the
same potential [8]. Further insights on the inver-
sion process can be obtained by using the singular
value decompostion inversion. For large values of
the basis set, and outside the optimal region, it will
appear more oscilation in the basis functions. It
is clear, therefore, the basis better represents the
potential in the optimal region. Since the singular
values decays to zero, the basis will be amplified
outside the region.

The analysis on the singular value basis v;
reinforce the previous analysis on the matrix S,
indicating in which region the inverted potential
has to be considered. With an initial guess for the
potential energy function, containing an average
error of 92% for the second virial data, another
potential was recovered, under the above analysis,
with an average error of 0.7% for Tikhonov reg-
ularization and 2.7% for truncated singular value
decomposition.

A general strategy to handle other nonlinear
problems is also provide by the sensitivity ap-
proach. For example, the determination of the po-
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Figure 4: Computed second virial coefficient from refer-

ence potential [12] (full line), inverted SVD potential (o),

inverted Tikhonov (+) and from the initial guess potential
(dashed line).

tential energy from scattering data can be tackled

by the present approach. Even in the situation in

which the kernel is unknow the sensibility matrix

can be constructed by experimental or simulated

data.
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